Spatial light modulator considerations for beam control in optical manipulation applications
نویسندگان
چکیده
Holographic beam forming to generate and control multiple optical traps has proved successful using high-resolution spatial light modulators (SLMs). This type of beam control allows a multitude of traps to be independently controlled in three dimensions. Also, exotic beam shapes and profiles can be generated, which gives the optical trapping system even greater flexibility. Until recently, the generation of high resolution phase patterns has limited the speed of dynamic holographic optical trapping (HOT) systems. Today, video rate operation controlling hundreds of traps using 512x512 phase masks is possible and significantly faster operation is possible with fewer traps using less phase resolution. Therefore, phase-only liquid crystal modulator response is becoming the bottleneck. This paper discusses recent advances in SLM developments which address this issue. Holographic beam control, spatial light modulators, phase-only modulation, liquid crystal, multi-spot beam steering, pulse shaping
منابع مشابه
Dynamic Manipulation of Bose-Einstein Condensates With a Spatial Light Modulator
We manipulate a Bose-Einstein condensate using the optical trap created by the diffraction of a laser beam on a fast ferro-electric liquid crystal spatial light modulator. The modulator acts as a phase grating which can generate arbitrary diffraction patterns and be rapidly reconfigured at rates up to 1 kHz to create smooth, time-varying optical potentials. The flexibility of the device is demo...
متن کاملIndependent polarisation control of multiple optical traps.
We present a system which uses a single spatial light modulator to control the spin angular momentum of multiple optical traps. These traps may be independently controlled both in terms of spatial location and in terms of their spin angular momentum content. The system relies on a spatial light modulator used in a "split-screen" configuration to generate beams of orthogonal polarisation states ...
متن کاملShaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics.
We present a powerful approach towards full understanding of laser light propagation through multimode optical fibres and control of the light at the fibre output. Transmission of light within a multimode fibre introduces randomization of laser beam amplitude, phase and polarization. We discuss the importance of each of these factors and introduce an experimental geometry allowing full analysis...
متن کاملFemtosecond pulse shaping using spatial light modulators
We review the field of femtosecond pulse shaping, in which Fourier synthesis methods are used to generate nearly arbitrarily shaped ultrafast optical wave forms according to user specification. An emphasis is placed on programmable pulse shaping methods based on the use of spatial light modulators. After outlining the fundamental principles of pulse shaping, we then present a detailed discussio...
متن کاملHigh efficient loading of two atoms into a microscopic optical trap by dynamically reshaping the trap with a spatial light modulator.
We demonstrated trapping two neutral (87)Rb atoms in a two site optical ring lattice generated by reflecting a single laser beam from a computer controlled spatial light modulator directly. The ring lattice was transformed into a Gaussian trap by dynamically displaying the holograms animation movie on the modulator. The trapped atoms follow the evolution of traps and move into the same microsco...
متن کامل